pKa Calculation Example
(Modified from http://mccammon.ucsd.edu/~chem215/lectures/lecture10/param/node3.html )
- Here are the pKa calculation procedures in step by step detail:
- First make a subdirectory for this exercise as follows:
# mkdir pka
# cd pka
- Second copy (or download) the six necessary files into your working directory (copy will be much faster than download):
# cp /class/pka/* . (<--Be careful of the dot.)
# ls -l
-rwxr--r-- 1 kwlee kwlee 752 Apr 25 15:44 pkaS-addH*
-rw-r--r-- 1 kwlee kwlee 31126 Apr 25 15:26 pkaS.dat
-rw-r--r-- 1 kwlee kwlee 839 Apr 25 15:26 pkaS-doinp.inp
-rw-r--r-- 1 kwlee kwlee 361 Apr 25 15:26 pkaS-dops.inp
-rwxr--r-- 1 kwlee kwlee 1215 Apr 25 15:26 pkaS-dosbs*
-rw-r--r-- 1 kwlee kwlee 1477 Apr 25 15:26 pkaS-hbuild.inp
- Download/prepare your pdb file for the calculation. I have already downloaded
PhoE porin (1pho.pdb) file from the
Brookhaven database for you.
Copy or rename pkaS.pdb from your pdb file for the next step:
# cp 1pho.pdb pkaS.pdb
- Now let's edit the PDB file to fix it up for the pKa procedure.
Remove all of the header infos, crystal waters,... and finally leave the
ATOM CARD(or lines) in the pdb file. The pkaS.pdb is the file you want to make.
# head pkaS.pdb
ATOM 1 N ALA 1 99.249 40.193 37.394 1.00 34.89
ATOM 2 CA ALA 1 100.516 40.633 38.037 1.00 34.89
ATOM 3 C ALA 1 101.298 41.520 37.084 1.00 34.89
ATOM 4 O ALA 1 101.379 41.233 35.892 1.00 34.89
ATOM 5 CB ALA 1 101.356 39.431 38.419 1.00 14.52
ATOM 6 N GLU 2 101.843 42.617 37.600 1.00 35.20
ATOM 7 CA GLU 2 102.617 43.532 36.772 1.00 35.20
ATOM 8 C GLU 2 104.058 43.081 36.802 1.00 35.20
ATOM 9 O GLU 2 104.803 43.428 37.707 1.00 35.20
ATOM 10 CB GLU 2 102.501 44.962 37.289 1.00 69.96
# tail pkaS.pdb
ATOM 2618 C PHE 340 97.666 37.450 39.007 1.00 26.37
ATOM 2619 O PHE 340 96.598 37.524 38.364 1.00 26.37
ATOM 2620 CB PHE 340 99.107 35.721 40.108 1.00 27.69
ATOM 2621 CG PHE 340 99.460 35.178 38.760 1.00 27.69
ATOM 2622 CD1 PHE 340 99.039 33.920 38.374 1.00 27.69
ATOM 2623 CD2 PHE 340 100.242 35.916 37.882 1.00 27.69
ATOM 2624 CE1 PHE 340 99.398 33.402 37.126 1.00 27.69
ATOM 2625 CE2 PHE 340 100.601 35.408 36.643 1.00 27.69
ATOM 2626 CZ PHE 340 100.180 34.150 36.264 1.00 27.69
ATOM 2627 OXT PHE 340 98.654 38.164 38.766 1.00 27.69
- There are still some problems with this PDB file that you
would encounter when you tried to add hydrogens. Some of the residues
have information about alternate positions of some of the side chain
atoms. One of those must be selected for each case and the residue name
fixed, the other atom positions deleted, and the occupancy set to 1.00.
See the below example:
...... lines not shown ......
ATOM 432 CG LYS 53 -5.378 14.291 11.615 1.00 11.19
ATOM 433 CD LYS 53 -6.203 14.696 10.348 1.00 22.57
ATOM 434 CE LYS 53 -5.338 15.443 9.380 1.00 27.91
ATOM 435 NZ LYS A53 -5.851 16.739 8.906 0.50 21.67
ATOM 436 NZ LYS B53 -4.770 14.533 8.344 0.50 26.94
ATOM 437 N HIS 54 -3.582 16.632 13.804 1.00 6.17
ATOM 438 CA HIS 54 -2.193 17.084 13.582 1.00 5.11
ATOM 439 C HIS 54 -1.334 16.703 14.783 1.00 6.15
...... lines not shown ......
...... lines not shown ......
ATOM 432 CG LYS 53 -5.378 14.291 11.615 1.00 11.19
ATOM 433 CD LYS 53 -6.203 14.696 10.348 1.00 22.57
ATOM 434 CE LYS 53 -5.338 15.443 9.380 1.00 27.91
ATOM 435 NZ LYS 53 -5.851 16.739 8.906 1.00 21.67
ATOM 437 N HIS 54 -3.582 16.632 13.804 1.00 6.17
ATOM 438 CA HIS 54 -2.193 17.084 13.582 1.00 5.11
ATOM 439 C HIS 54 -1.334 16.703 14.783 1.00 6.15
...... lines not shown ......
- After you revised/deleted some atoms(lines) you should renumber the
atoms in the pdb file so type the following commands:
% renumber
Enter name of PDB file to renumber ---> pkaS.pdb
Renumbered PDB file will appear in:pkaS.pdb.new
948 Atoms Processed Successfully
¡¡
% mv pkaS.pdb.new pkaS.pdb
overwrite pkaS.pdb? (yes/no)[no] : y
- Edit the file again and put a HEADER line at the top.
You can do this by any editor.
# head pkaS.pdb
HEADER
ATOM 1 N ALA 1 99.249 40.193 37.394 1.00 34.89
ATOM 2 CA ALA 1 100.516 40.633 38.037 1.00 34.89
ATOM 3 C ALA 1 101.298 41.520 37.084 1.00 34.89
ATOM 4 O ALA 1 101.379 41.233 35.892 1.00 34.89
ATOM 5 CB ALA 1 101.356 39.431 38.419 1.00 14.52
ATOM 6 N GLU 2 101.843 42.617 37.600 1.00 35.20
ATOM 7 CA GLU 2 102.617 43.532 36.772 1.00 35.20
...... lines not shown ......
Now look to see how many histidines there are and of what
type. There is one and is of type HISA (HD1 present in neutral
form).
# grep 'CA HIS' pkaS.pdb
ATOM 154 CA HIS 21 83.821 20.395 40.368 1.00 11.67
Now look to see how many cysteines there are and of what
type (i.e. are they all involved in disulphide bonds). Use insightII or
VMD to
locate the CYS residues to see. If they are not involved in disulphide
bonds, they need to be treated as ionizable.
# grep 'CA CYS' pkaS.pdb
Now edit the file: pkaS-doinp.inp (vi pkaS-doinp.inp)...
NAME of mol 1 file
pkaSH.pdb
NAME of charge and radius file
pkaS.dat
NUMBER of polypeptide chains of mol 1
1
NUMBERS of first residues of each chain
1
NUMBERS of last residues of each chain
340
NO of histidins, sites: 1=ND1=HISB; 2=NE2=HISA; 0=CE1 in A or B
1
2
NO GRIDS; SPACING and dime (max 5 grids)
4
2.5 45 45 45
1.2 15 15 15
0.75 15 15 15
0.25 20 20 20
MAXIMAL number of iterations for elec
300
TEMPERATURE in K
293.0
DIELECTRIC constants of solvent and protein
80.0 20.0
IONIC strength and radius of ions
150.0 2.0
NO ADD TITR SITES, SITES DATA:a4,1x,a4,1x,f5.1,1x,i2
0
CYS to be included, how many? and their res numbers
0
DATA for new diel. map: nmap and nsph. Put nsph=0 for no_map
1.4 500
If you
have two CYS residues not
involved in disulphide bonds, you have to do like this:
...... lines not shown ......
IONIC strength and radius of ions
150.0 2.0
NO ADD TITR SITES, SITES DATA:a4,1x,a4,1x,f5.1,1x,i2
0
CYS to be included, how many? and their res numbers
2
9 50
DATA for new diel. map: nmap and nsph. Put nsph=0 for no_map
1.4 500
Now you are ready to run the pkaS-addH procedure to add hydrogens to all
polar atoms in your system such that all residues are in their neutral
form.
% ./pkaS-addH
setenv UHBD_EXEC /usr/local/uhbd
cp ./pkaS.pdb ./protein.pdb
/usr/local/uhbd/pdb2charmms
/usr/local/uhbd/charmm
/usr/local/uhbd/charmm2pdbs
Now look at the resulting pdb file (vi pkaSH.pdb). Look to
ensure that all atoms have reasonable coords (i.e. that none have
999.00 as coord values) and that the N- and C-terminal residues have
the right numbers of hydrogens. Look at the ASP and GLU residues to see
that the COO groups have a hydrogen (COOH), ... Now exit out of vi.
Also look near the end of the log file (pkaS-hbuild.log) to see if any
errors were reported by CHARMM (i.e. pay special attention to the end
of this file to see whether a NORMAL TERMINATION BY NORMAL STOP was
attained). Normally you have to delete the 1st line of the pkaSH.pdb file,
because it is the copy of the 2nd line.
Now, check to make sure that any non-amino acid groups that
you have in your pdb file have parameters in the pkaS.dat file. If not
(as is true in this case), edit that file and add some (there are no
parameters for a residue named FE):
...... lines not shown ......
ACH H93 0.092 0.000 0.000 1.200
CA CA 2.000 0.000 0.000 1.900
SO4 S -2.000 0.000 0.000 1.900
ZN ZN 2.000 0.000 0.000 1.900
MN MN 2.000 0.000 0.000 1.900
HEM FE 2.000 0.000 0.000 0.740
...... lines not shown ......
(add the FE params as shown)
...... lines not shown ......
ACH H93 0.092 0.000 0.000 1.200
CA CA 2.000 0.000 0.000 1.900
SO4 S -2.000 0.000 0.000 1.900
ZN ZN 2.000 0.000 0.000 1.900
MN MN 2.000 0.000 0.000 1.900
FE FE 2.000 0.000 0.000 1.900
HEM FE 2.000 0.000 0.000 0.740
...... lines not shown ......
One final file needs to be edited (vi pkaS-dops.inp). Enter
a proper header card and set the pH to the desired value and make sure
that the other numerical values are set as shown.
header for the run
Porin OmpF at pH 7
pH and absolute temperature
7.00 293.0
number of MC steps, number of initial steps, seed
1000000 100000 23313.0
parameter s1
0.99
number and data on additional charges
0
Now run the pKa calculation (this will take ca. 40 minutes
so take this time to work on your projects):
./pkaS-dosbs >&
pka.log
You will get lots of repeating information going to the pka.log file.
Once the calc. has finished, look at the file: pkaS-dops.out for the
distribution of ionization states.
***Checking the result files for HEMERYTHRIN (1HMO)***
( HEMERYTHRIN (1HMO) ¿¡ ´ëÇÑ °è»ê °á°úº¸±â)
(Sorry for not giving the result files of OmpF. It will be updated soon.)
pkaS-dops.out :
HEME
INPUT DATA:
Temperature: pH:
293.00 7.00
No of MC steps: No of initial MS steps:
1000000 100000
seed: parameter s:
23313.0 0.990
RESULTS:
Protein charge from all steps -3.27 +/- 0.00
Protein charge from mean occupancies -3.29
First protein energy 0.115892D+03 kcal/mol
Minimal free energy found -.124325D+03 kcal/mol
Free energy of the protein -.132142D+03 kcal/mol
Number of accepted states 641111
Number of changes done 460297
Mean final occupancies, charges and pKs of sites
Final pK << pH if occupancy of the site is 0
Final pK >> pH if occupancy of the site is 1
titratable site occupancy charge pK_app pK_intr
1 N GLYN 1 0.5036 0.504 7.01 7.10
2 CG ASP 6 0.0005 -0.999 3.72 4.05
3 OH TYR 8 1.0000 0.000 >> pH 10.93
4 SG CYS 9 0.9865 -0.013 8.87 8.56
5 CG ASP 11 0.0000 -1.000 << pH 3.88
6 CZ ARG 15 1.0000 1.000 >> pH 11.36
7 OH TYR 18 1.0000 0.000 >> pH 9.52
8 CG ASP 22 0.0000 -1.000 2.34 2.74
9 CG ASP 23 0.0001 -1.000 3.09 3.55
10 CD GLU 24 0.0003 -1.000 3.44 3.29
11 NE2 HISA 25 0.0000 0.000 << pH -7.54
12 NZ LYS 26 1.0000 1.000 11.40 9.16
13 CG ASP 39 0.0011 -0.999 4.04 3.80
14 CG ASP 42 0.0007 -0.999 3.82 3.65
15 NE2 HISA 43 0.1298 0.130 6.17 5.42
16 CD GLU 46 0.0003 -1.000 3.44 4.05
17 CZ ARG 48 1.0000 1.000 >> pH 10.97
18 CZ ARG 49 1.0000 1.000 >> pH 11.30
19 SG CYS 50 0.9273 -0.073 8.11 8.69
20 NZ LYS 53 0.9993 0.999 10.13 9.04
21 NE2 HISA 54 0.0000 0.000 << pH -7.13
22 CD GLU 58 0.0000 -1.000 << pH -4.86
23 OH TYR 67 0.9956 -0.004 9.36 9.21
24 OH TYR 70 0.9990 -0.001 10.01 10.06
25 CD GLU 72 0.0010 -0.999 3.99 4.01
26 NE2 HISA 73 0.0000 0.000 << pH -5.03
27 NZ LYS 74 0.9998 1.000 10.75 9.97
28 NZ LYS 75 1.0000 1.000 >> pH 10.19
29 NE2 HISA 77 0.0000 0.000 << pH -6.48
30 CG ASP 78 0.0000 -1.000 1.90 3.77
31 CG ASP 79 0.0001 -1.000 3.16 4.15
32 NE2 HISA 82 0.1668 0.167 6.30 6.13
33 NZ LYS 83 0.9999 1.000 11.05 9.72
34 CG ASP 85 0.0003 -1.000 3.53 3.88
35 CG ASP 88 0.0009 -0.999 3.97 3.67
36 CG ASP 90 0.0011 -0.999 4.04 3.46
37 OH TYR 93 0.9983 -0.002 9.78 9.83
38 NZ LYS 95 0.9997 1.000 10.55 9.87
39 NE2 HISA 101 0.0000 0.000 << pH -6.43
40 NZ LYS 103 0.9964 0.996 9.44 8.66
41 CG ASP 106 0.0000 -1.000 << pH -5.27
42 NZ LYS 108 0.9985 0.999 9.83 9.97
43 OH TYR 109 0.9994 -0.001 10.22 4.59
44 CZ ARG 110 1.0000 1.000 >> pH 11.36
45 NZ LYS 112 0.9990 0.999 9.98 10.04
46 C ILEC 115 0.0000 -1.000 2.53 3.19
Charges of sites for most probable state
1 1. 0. 1. 0. 1. 0. 1. 0. 0. 1. 1. 1. 0. 1. 0. 0. 1. 1. 0. 0.
2 -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1.
3 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
4 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. -1. 0. 0. -1. 0. 0. 0. 0. 0.
5 -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1.
6 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
7 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
8 -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1.
9 -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1.
10 -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1.
11 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
12 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
13 -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1.
14 -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1.
15 0. 0. 0. 0. 1. 1. 0. 0. 1. 1. 0. 0. 0. 1. 0. 1. 0. 0. 0. 0.
16 -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1.
17 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
18 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
19 0. 0. 0. 0. 0. 0. -1. -1. 0. 0. -1. 0. -1. -1. 0. -1. 0. 0. 0. 0.
20 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
21 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
22 -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1.
23 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. -1. -1. 0.
24 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
25 -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1.
26 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
27 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
28 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
29 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
30 -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1.
31 -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1.
32 0. 0. 1. 1. 0. 0. 0. 0. 1. 1. 1. 0. 1. 0. 0. 0. 0. 0. 0. 0.
33 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
34 -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1.
35 -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1.
36 -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1.
37 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
38 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
39 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
40 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 0.
41 -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1.
42 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
43 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
44 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
45 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
46 -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1.
-3. -4. -2. -3. -2. -3. -4. -5. -2. -1. -3. -4. -4. -3. -5. -4. -4. -4. -5. -5.
Free electrostatic energies of 20 lowest states
1 -.124324867925D+03 kcal/mol
2 -.124302478390D+03 kcal/mol
3 -.123373072944D+03 kcal/mol
4 -.123370862409D+03 kcal/mol
5 -.123194999014D+03 kcal/mol
6 -.123180065509D+03 kcal/mol
7 -.122794275556D+03 kcal/mol
8 -.122755982322D+03 kcal/mol
9 -.122234359329D+03 kcal/mol
10 -.122229113834D+03 kcal/mol
11 -.121871963476D+03 kcal/mol
12 -.121868415206D+03 kcal/mol
13 -.121853849241D+03 kcal/mol
14 -.121847561646D+03 kcal/mol
15 -.121821614872D+03 kcal/mol
16 -.121816724441D+03 kcal/mol
17 -.121333239585D+03 kcal/mol
18 -.121298564718D+03 kcal/mol
19 -.121218807284D+03 kcal/mol
20 -.121120569050D+03 kcal/mol
Note that the two lowest energy states (1 and 2) have almost
the same energy. These should ocnsidered to be degenerate states and a
close inspection should be made of the difference betweeen these two
states.
For a better estimate of the predicted pKas, you should look
at the file from the hybrid alanysis (hybrid.out), included below:
21
ph mean q Gion dGion CPU(s) gcut tcut Gelec
-5.00 15.46 -315.27 96.71 0.012464 0.000 0.050 16.47
-4.00 15.07 -294.23 88.73 0.010796 0.000 0.050 10.39
-3.00 14.91 -273.52 80.43 0.020011 0.000 0.050 8.32
-2.00 14.48 -253.17 71.77 0.037045 0.000 0.050 3.34
-1.00 14.08 -233.48 62.44 0.076233 0.000 0.050 -1.31
0.00 13.95 -214.13 52.79 0.076418 0.500 0.050 -2.34
1.00 13.48 -195.08 42.83 0.127944 0.700 0.050 -3.63
2.00 11.44 -177.62 31.36 0.385696 0.700 0.050 -8.34
3.00 7.19 -164.53 16.22 0.194681 0.400 0.050 -15.36
4.00 2.15 -158.19 -0.94 0.214232 0.400 0.050 -20.60
5.00 -0.56 -157.43 -12.55 0.118689 0.400 0.050 -22.32
6.00 -1.78 -159.04 -19.29 0.089442 0.400 0.050 -22.69
7.00 -3.28 -162.55 -22.41 0.103565 0.400 0.050 -23.08
8.00 -4.51 -167.93 -23.13 0.115720 0.300 0.050 -23.40
9.00 -6.21 -175.24 -22.55 0.131236 0.300 0.050 -23.39
10.00 -8.94 -185.59 -19.50 0.071692 0.300 0.050 -22.69
11.00 -12.67 -200.41 -11.77 0.071817 0.300 0.050 -19.40
12.00 -16.88 -220.83 -2.95 0.071364 0.300 0.050 -12.81
13.00 -20.75 -246.89 3.96 0.077185 0.200 0.050 -4.05
14.00 -23.54 -277.66 7.52 0.013917 0.000 0.050 4.01
15.00 -24.74 -311.18 8.51 0.008982 0.000 0.050 7.85
46
Group pk(model) pK(app) pK(app) - pK(model)
1 7.500 7.042 -0.458
2 4.000 3.558 -0.442
3 9.600 13.357 3.757
4 8.300 8.951 0.651
5 4.000 3.081 -0.919
6 12.000 12.418 0.418
7 9.600 12.420 2.820
8 4.000 1.952 -2.048
9 4.000 2.817 -1.183
10 4.400 3.382 -1.018
11 6.300 999.000 992.700
12 10.400 11.150 0.750
13 4.000 3.757 -0.243
14 4.000 3.350 -0.650
15 6.300 6.188 -0.112
16 4.400 2.983 -1.417
17 12.000 13.270 1.270
18 12.000 14.223 2.223
19 8.300 8.226 -0.074
20 10.400 11.236 0.836
21 6.300 999.000 992.700
22 4.400 999.000 994.600
23 9.600 9.575 -0.025
24 9.600 10.368 0.768
25 4.400 3.818 -0.582
26 6.300 -2.102 -8.402
27 10.400 12.249 1.849
28 10.400 12.120 1.720
29 6.300 999.000 992.700
30 4.000 2.508 -1.492
31 4.000 2.026 -1.974
32 6.300 6.318 0.018
33 10.400 11.978 1.578
34 4.000 2.522 -1.478
35 4.000 3.726 -0.274
36 4.000 3.381 -0.619
37 9.600 10.377 0.777
38 10.400 11.130 0.730
39 6.300 999.000 992.700
40 10.400 9.566 -0.834
41 4.000 999.000 995.000
42 10.400 10.502 0.102
43 9.600 11.845 2.245
44 12.000 13.086 1.086
45 10.400 11.197 0.797
46 3.800 3.359 -0.441
-5.00 (pH)
1.000
0.000
0.000
0.000
0.000
1.000
0.000
0.000
0.000
0.000
0.079
1.000
0.000
0.000
1.000
0.000
1.000
1.000
0.000
1.000
0.227
-0.877
0.000
0.000
0.000
0.958
1.000
1.000
0.011
0.000
0.000
1.000
1.000
0.000
0.000
0.000
0.000
1.000
0.030
1.000
-0.971
1.000
0.000
1.000
1.000
0.000
-4.00 (pH)
1.000
0.000
0.000
0.000
0.000
1.000
0.000
0.000
0.000
0.000
0.014
1.000
0.000
0.000
1.000
0.000
1.000
1.000
0.000
1.000
0.041
-0.961
0.000
0.000
0.000
0.940
1.000
1.000
0.007
0.000
0.000
1.000
1.000
0.000
0.000
0.000
0.000
1.000
0.015
1.000
-0.991
1.000
0.000
1.000
1.000
0.000
...... remaining lines not shown ......
Take a look at the hybrid.chart for a more
readable form of these results.
Some ionizable residues have predicted pKas that are in the
range of 999. This just means that the residue titrates beyond the pH
ranges considered. It usually also means that there are titratable
groups nearby that are more ionizable and prevent it from ionizing.
Note that this file has ionization state information for
every ionizable residue for a wide range of pH values. It is possible
to plot a titration curve for whatever residue(s) that you want with a
simple conversion program that I have written (/usr/local/pka/hybrid2xmgr).
You will be asked for the residue number for the ionizable residue that
you want data for. The plotting program: xmgr (/usr/local/pka/xmgr)
can be used to make the plot(s).
If you want to continue on to do an electrostatics
calculation, then run the following program: /usr/local/pka
/dops2uhbd
A file will result with the name: editq.out with commands in it
appropriate for using in a UHBD input file for an electrostatics
calculation. You should take one like I gave in one of the earlier
computational labs on electrostatics calculations
edit charge 0.19 atnum 1 end
edit charge -0.30 atnum 46 end
edit charge -0.65 atnum 69 end
edit charge -0.30 atnum 100 end
edit charge 0.80 atnum 143 end
edit charge -0.65 atnum 182 end
edit charge -0.30 atnum 217 end
...... lines not shown ......
These commands should be used in the following way:
read mol1 file "molecule.pdb" pdb end
set charge radii file "qcharmm.dat" para mine end
edit charge 0.19 atnum 1 end
edit charge -0.30 atnum 46 end
edit charge -0.65 atnum 69 end
edit charge -0.30 atnum 100 end
edit charge 0.80 atnum 143 end
edit charge -0.65 atnum 182 end
edit charge -0.30 atnum 217 end
...... lines not shown ......
print apar mol1 end
elec calc mol1
...... lines not shown ......
***Checking the result files for HIV Integrase***
(HIV Integrase¿¡ ´ëÇÑ °è»ê °á°úº¸±â)
Homework with HslV (1e94) structure [download ]