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Globally, breast cancer is one of the primary reasons of death noticed in women. Despite continuous efforts to
formulate effective treatments, search to identify promising therapeutics is underway. Consequently, a drug
with low toxicity, high efficacy, and which can escape resistance mechanism is in a high demand. Natural com-
pounds are bestowed with several medicinal properties demonstrating low toxicity. Therefore, the current
research focuses on the use of several plant- derived chemical compounds against aromatase, a validated drug
target for breast cancer. Correspondingly, employing the known inhibitors, a 3D QSAR pharmacophore model
was generated and was subsequently validated. Using the three-featured pharmacophore as the 3D query, the
alkaloids, flavonoids, coumarins and the AfroDB were scrupulously examined to retrieve the compounds with
inhibitory activities complemented by the pharmacophore model. The obtained compounds were subjected to
molecular docking studies executed employing the Cdocker accessible on discovery studio v4.5. The resultant
ideal poses from the largest cluster conferred with key reside interactions and higher dock scores than the refer-
ence and the Food and Drug Administration (FDA) approved drugs were escalated to molecular dynamics simu-
lation studies conducted employing GROMACS v5.0.6 for 30 ns. Correspondingly, the Hits (ZINC95486358,
ZINC95486354, and ZINC90711737) have displayed stable root mean square deviations, coupled by appropriate
positioning at the active site displaying greater number of hydrogen bonds. Moreover, the Hits (ZINC95486358,
ZINC95486354, and ZINC90711737)were noticed to anchor with various key residues essential for clamping the
ligand at the binding pocket. Therefore, these findings guide us to determine that the identified Hits can act
effectively against breast cancer, thereby increasing the life expectancy. Furthermore, they can assist as scaffolds
for designing novel drugs that aid in curing the cancer.

© 2018 SAAB. Published by Elsevier B.V. All rights reserved.
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1. Introduction

The enzyme aromatase is fundamentally essential for the conversion
of androgens to aromatic estrogens executed through three hydroxyl-
ation reactions (Subramanian et al., 2008; Chen et al., 2009; Chan
et al., 2015). This is a member of cytochrome P450 family of CYP19A1
gene, located on chromosome 15 (Chumsri et al., 2011a). The key
importance of aromatase is that it is the only enzyme in vertebrates
capable of aromatizing the six-membered ring and consequently the
only enzyme that generates estrogen (Chumsri et al., 2011b). This en-
zyme is predominantly observed in the ovaries, adipose fibroblast cells
of the postmenopausal women and placenta of the pregnant women.
The so formed estrogens demonstrate their actions after anchoring to
their corresponding receptors such as the estrogen receptor-α and the
estrogen receptor-β (Lubahn et al., 1993; Krege et al., 1998; Dupont
hts reserved.

, Modulation of aromatase by
(2018), https://doi.org/10.10
et al., 2000; Zhao et al., 2016). A significant role of estrogens is noticed
in the female reproductive system (Bulun, 2005; Carroll, 2007), while
plays an essential role in vascular biology (Mendelsohn, 2002; O'Lone
et al., 2007; Knowlton and Lee, 2012), bone metabolism (Väänänen
and Härkönen, 1996; Nakamura et al., 2007; Prior et al., 2017; Sozen
et al., 2017), bone resorption (Riggs, 2000; Streicher et al., 2017;
Tabatabaei-Malazy et al., 2017), brain and its functions (Gillies and
McArthur, 2010; Zarate et al., 2017), in cognition (Cheon, 2017; Girard
et al., 2017; Yan et al., 2017) and estrogen relatedα gene in binge eating
(Lutter et al., 2017). Nevertheless, the estrogen has gained wider atten-
tion for its role in demonstrating breast cancer and several benign and
malignant hormone-dependent disorders (Bulun, 2005; Santen et al.,
2015).

The enzyme aromatase was observed to be in elevated levels in
breast cancer women together with high levels of estrogen (Harada,
1997; Balunas et al., 2008). Furthermore, it is well established that
estrogen exerts a striking ability of proliferation and is able to trigger
the breast epithelial cell mitosis and promotes the cell divisions, paving
way for random genetic errors (Travis and Key, 2003). Correspondingly,
natural compounds—A pharmacophore guided molecular modelling
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the proliferative effect of the estrogen is demonstrated by sequential
steps in response to the estrogen that regulates the cell differentiation
(Clemons andGoss, 2001). Consequently, being the solo source of estro-
gen production particularly in postmenopausal women, it can be
deduced that inhibiting aromatase can lead to diminished levels of
estrogen. Furthermore, hindering the aromatase activity and
attempting to reduce the estrogen levels might result in decreased
growth of the cancer cells (Kang et al., 2018).

One of the effective treatments administered to the patients is the
use of aromatase inhibitors (AIs) (Chumsri et al., 2011b). AIs can be cat-
egorized into steroidal and non-steroidal based upon their molecular
skeleton (Adhikari et al., 2017). The type I steroidal inhibitors such as
formestane and exemestane exhibit a high structural similarity with
the substrate and further covalently bind to the aromatase resulting in
an irreversible reaction (Kang et al., 2018). These inhibitors are referred
to as suicide inhibitors as they are inactivated by its own effect,
decomposing the aromatase after binding (Thompson and Siiteri,
1974; Hong and Chen, 2006; Chumsri et al., 2011a; Daldorff et al.,
2017). On the contrary the non-steroidal type II inhibitors, such as
fadrozole, vorozole, rogletimide, letrozole and anastrozole, interact
with the heme group thereby impeding the androgen binding leading
to a competitive inhibition of androgens. Moreover, the cancer cells
have developed resistance against aromatase inhibitors thereby ham-
pering the effective treatment (Miller and Larionov, 2012; Ma et al.,
2015; Hanamura and Hayashi, 2017). These conditions pave way for
the development and designing of new drugs with no side effects,
whilst contributing to effective therapeutics.

Although the AIs have proven to be beneficial in the post-
menopausal breast cancer patients (Chlebowski et al., 2009) are often
regarded as effective first-line therapeutics (Chlebowski et al., 2009),
and are reported to have certain grave side effects on bones, brain and
the heart (Chlebowski et al., 2006; Goss et al., 2007; Sini et al., 2017).
In order to overcome these side effects and further to render treatment
with less toxic effects, the use of natural compounds as AIs has been
markedly increasing (Balunas and Kinghorn, 2010a, 2010b).

For the current study, different natural compounds have been cho-
sen to assess their effect against the enzyme aromatase. The compounds
such as alkaloids and flavonoids has been obtained fromNPACT(Mangal
et al., 2013) a unique database dedicated to experimentally validated
plant derived compounds with anticancer activities. The coumarins
have been acquired according to the literature support (Musa et al.,
2008; Venugopala et al., 2013; Lv et al., 2015) and chemical compound
from African medicinal plants(Ntie-Kang et al., 2013) available from
Zinc database (http://zinc.docking.org/catalogs/afronp). These com-
pounds were subsequently prepared by examining for any duplicates,
and were energy minimized before subjecting them to molecular
docking studies.

For the current investigation, the protein target aromatase with the
PDB code 3EQM bearing a resolution of 2.90 Å containing an innate nat-
ural substrate, androstenedione was chosen. The active site is marked
10Å around the substrate for all the atoms that exist within the selected
dimension. Additionally, the residues Arg 115, Trp 141, Arg 145, Arg 375
and Arg 435 were found to interact with the haemmoiety. The enzyme
aromatase is further comprised of 12 major α-helices labeled from A to
L and 10 β-sheets, numerically labeled from 1 to 10, organized into one
major and three minor sheets (Ghosh et al., 2009).

Therefore, the objective of the current study is to assess the molecu-
lar affinities of the naturally occurring compounds on aromatase to
identify the potential inhibitor.

2. Materials and methods

2.1. Selection of the dataset compounds

The selection of the known inhibitors play an important role for the
subsequent pharmacophore construction, utilized for retrieving novel
Please cite this article as: Rampogu, S., et al., Modulation of aromatase by
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compounds from various databases. For the current investigation, a
dataset consisting of 36 compounds from different literatures (Browne
et al., 1991; Numazawa et al., 1996; Sonnet et al., 1998; Luqman et al.,
2012; Mayhoub et al., 2012; Yadav et al., 2015) were established
which were further grouped into the training set compounds and the
test set compounds. The formation of the training set is a principle
event as it is employed in the generation of the pharmacophore. A train-
ing set should include the most active compounds as it is exploited to
offer the features used for inhibition. Additionally, a training set should
have a minimum of 16 structurally diverse compounds (Sakkiah and
Lee, 2012), should exhibit a range of 4–5 orders of magnitude and
should impart knowledge on structural and activities of the small com-
pounds. For the current study, 16 compounds were rigorously sorted
and were grouped into training set that have exhibited different struc-
tures and varied activity ranges from 0.015 nmol/L–7,834,296 nmol/L.
Furthermore, these compounds were further classified based upon the
activity ranges. Compounds with the activity values less than
500 nmol/L are referred to as most active compounds, compounds
with the activity ranges between 500 nmol/L–10,000 nmol/L were la-
beled as moderately active compounds and the compounds with activ-
ity values greater than 10,000 nmol/L are referred to as inactive
compounds. Correspondingly, their 2D structures were sketched
employing ChemSketch (http://www.acdlabs.com) and were imported
onto the discovery studio v4.5 (DS) for generating their 3D structures.

2.2. Pharmacophore generation

The 16 training set compounds were employed to build the
pharmacophore model. In order to generate the most reliable and effi-
cient pharmacophore, it is important to comprehend on the inhibitory
chemical features present within the compounds that could trigger
the therapeutics against breast cancer. Accordingly, the FeatureMapping
protocol available on the DS was recruited to probe into the features
required for inhibition with a minimum and the maximum number of
features were selected as 0 and 5, respectively. The resultant findings
were used to generate the pharmacophore model employing the 3D
QSAR Pharmacophore Generationmodule availablewith theDS consider-
ing the minimum and the maximum features as 0 and 5 respectively.
Furthermore, the BEST algorithm was used to generate the conforma-
tion of lower energy at the uncertainty property value of 3 while
retaining the other parameters at default values. Correspondingly, ten
pharmacophore models were prompted and the best amongst them
was chosen based upon the Debnath's analysis.

2.3. Validation of the pharmacophore model

The obtained pharmacophoremodel was validated to assess its abil-
ity in predicting the activity of the compounds in the same order as the
experimental activity values. To evaluate the robustness of themodel in
discrimination the active compounds from the inactives and thereby,
retrieving the active compounds from various databases and its statisti-
cal significance. The chosen pharmacophorewas validated to determine
its robustness employing three different approaches (Rampogu et al.,
2018a) such as, test set method of validation, decoy set method of vali-
dation and the Fischer's randomization method.

The test set validation was performed to assess if the selected Hypo
could establish the activities of the compounds as those experimentally
determined. The compounds that comprise the test set were the diverse
compounds selected form the dataset other than the training set com-
pounds, demonstrating different structures and varied IC50 values. The
decoy set method was conducted to analyze whether the Hypo was
able enough to retrieve the active compounds from the external data
set. The results were secured based upon the enrichment factor (EF)
and the goodness offit (GF) scores. The Fischer's randomizationmethod
was executed to evaluate the statistical significance of themodel and to
establish that it was not generated by chance.
natural compounds—A pharmacophore guided molecular modelling
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2.4. Virtual screening for identifying the new lead candidates

The validated pharmacophoremodelwas employed as a 3D query to
screen different natural compounds andnatural compound databases to
retrieve novel compounds imbibedwith all the chemical features repre-
sented by the pharmacophore model. A set of 50 alkaloids and 162 fla-
vonoids were retrieved from the NPACT (http://crdd.osdd.net/raghava/
npact/), a total of 47 coumarin compounds were obtained from various
literatures and 885 compounds from the African medicinal plants were
grouped accordingly and were recruited to screen the compounds. Ac-
cordingly, the Pharmacophore Mapping tool embedded with the DS
was enabled to retrieve the compounds that mapped well with the
pharmacophore. All the retrieved compounds were considered to be
imbibed with the inhibitory activities. These compounds along with
the most active compound from the training set hereinafter referred
to as reference compound and the two FDA approved drugs,
exemestane and letrozole, were chosen for a comparative study.

2.5. Molecular docking mechanism

Molecular docking is one of the superior methods to estimate the
binding affinities between the protein and the ligands and additionally
determines the binding mode of the ligands. For the current study, the
Cdocker accessible on the DS was employed which operates on
CHARMm forcefield. This is a grid based docking programme, where
the protein is held rigid while the ligands are allowed to move. The re-
sults are evaluated based upon the -Cdocker interaction energies, the
higher the energy value, the greater the affinity between the protein
and the corresponding ligands (Rampogu and Rampogu Lemuel,
2016). The target protein for the current study that was chosen has aro-
matase with the PDB code 3EQM. Correspondingly, the protein was
downloaded from the protein data bank (www.rcsb.org) and was fur-
ther prepared by removing all the water molecules and by subsequent
addition of the hydrogen atoms. The histidine protonation state was
aligned as was observed with the crystal structure. Additionally, the
binding site was designated 10 Å around the in-built cocrystal, labelling
all the atoms within the specified range as the active site residues. Ac-
cordingly, the residues Arg115, Ala306, Asp309, Val370, Leu372,
Met374 and Leu477were deemed important. To affirm the dockingpro-
tocol employed, the cocrystal ligand was docked into the protein active
site. The results have generated an acceptable RMSD of 1.2 Å, Supple-
mentary Fig. 1. The ligands obtained from the virtual screening process
alongwith the reference and the FDA approved drugs were docked into
the active site of the protein permitting the generation of 50 docked
poses and were subsequently clustered. Moreover, to secure the best-
docked pose, the ligand from the largest cluster demonstrating the
highest -Cdocker interaction energies were manually examined for the
hydrogen bond interaction with the key residues. The obtained binding
poses were further escalated to molecular dynamics (MD) simulations
to contemplate the reliability of the docked poses and to delineate on
the behaviour of the small molecules at the proteins active site.

2.6. Molecular dynamic simulations

The obtained poses from the molecular docking were subjected to
molecular simulation studies to unravel the molecular behaviour of
the ligands at the active sites and further to assess the stability of the
protein ligand complex recruiting GROMACS v5.0.6 (Van Der Spoel
et al., 2005) using the CHARMm27 forcefield. The ligand topologies
were procured from SwissParam (Zoete et al., 2011) and the systems
were solvated in the dodecahedron box withTIP3P water model and
counter ions. Subsequently, to dislodge any unwanted contacts that
exist within the initial structures, 10,000 minimization steps were con-
ducted employing the steepest descent algorithm with a maximum
force being lower than 1000 kJ/mol. The minimized structures were
thereafter subjected to double phased equilibration steps. The primary
Please cite this article as: Rampogu, S., et al., Modulation of aromatase by
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phase of NVT equilibration was executed for 1 ns at 300 K using a
V-rescale thermostat for monitoring constant temperature. The second-
ary phase of NPT equilibration was conducted for 1 ns using 1 bar
Parrinello-Rahman barostat (Parrinello, 1981). Care should be taken
that the protein backbone is placed rigid allowing the solventmolecules
and the counter-ions to wobble. Furthermore, SETTLE (Miyamoto and
Kollman, 1992) and LINCS (Hess et al., 1997) algorithms were recruited
to constrain the geometry of water molecules and the bonds involving
hydrogen atoms respectively, implementing theperiodic boundary con-
ditions. Particle Mesh Ewald (PME) (Darden et al., 1993) algorithmwas
used to compute the long-range electrostatic interactions and a cut off
distance of 9 Å and 10 Å was used to regulate the Coulombic and Van
der Waals interactions. The ensemble complex structures were esca-
lated to MD simulations conducted for 30 ns saving the data for every
1 ps. The generated results were thoroughly contemplated employing
the visual molecular dynamics (VMD) (Humphrey et al., 1996) and DS.

3. Results and discussion

3.1. Pharmacophore generation

A total of 16 training set compounds Fig. 1 with the activity values
spanning between 0.015 nmol/L and 7,834,296 nmol/L that demon-
strated diverse chemical structures and activity values were utilized to
build the statistically significant pharmacophore model recruiting the
in-built 3D QSAR Pharmacophore Generation feature obtainable with
the DS. For its accomplishment, it uses the Catalyst HypoGen algorithm
(Rampogu et al., 2018a) to obtain pharmacophore models from a set
of known ligands with their known biological activities. Furthermore,
the module generates the pharmacophore models depending upon
the ability of the ligands to fit onto the pharmacophore model. From
the knowledge imparted by the FeatureMapping protocol, the hydrogen
bond acceptor (HBA), hydrogen bond acceptor lipid (HBL), hydrogen
bond donor (HBD), positive ionizable (POS) and ring aromatic (RA)
have been chosen with the maximum interfeature distance as 2.97.
Accordingly, 10 hypotheses were generated with divergent values as
represented in Table 1. Upon thorough evaluation of the features ren-
dered by ten hypotheses, the ring aromatic has consistently appeared
with all the hypothesis inferring its significance in contributing to the
inhibitory activities. The best pharmacophore was chosen based upon
the Debnath's analysis (Debnath, 2002), which states that the best
pharmacophore model should exhibit a maximum cost difference,
least RMSD, highest correlation with a substantial fit value.

Correspondingly, a pharmacophore model with three features, HBA,
HBL and RA has been generated, Fig. 2A. Furthermore, upon superimpo-
sition of the active and the inactive compounds from the training set, it
was observed that the active compound has aligned absolutely with all
the features, Fig. 2B,while the inactive compoundhasmappedwith two
features of the Hypo1, Fig. 2C. Therefore, these findings suggest that the
Hypo1 could ably differentiate the active compounds from the inactive
ones.

To further evaluate the predictive ability of Hypo1, it was employed
to assess the activities of each compound present in the training set by
regression analysis. The results have demonstrated that the Hypo1 has
efficiently predicted the activities of the compound in the same order
of magnitude as the experimental results. However, one inactive com-
poundwas estimated as active compound. This demonstrates the ability
of Hypo1 in estimating the activities of the compounds as their experi-
mental ranges, Table 2.

3.2. Pharmacophore validation

The primary role of the selected Hypo1 is to retrieve the compounds
from the databases with the inhibitory features similar to that of the
active training set compounds; therefore, it is extremely essential to
assess the robustness of the Hypo1. Accordingly, the chosen Hypo1
natural compounds—A pharmacophore guided molecular modelling
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Fig. 1. 2D representation of the training set compounds.
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was validated employing the Fischer's randomization method, test set
method and the decoy set method.
3.2.1. Fischer's randomization method
To examine the statistical significance of the Hypo1, the Fischer's

randomization was conducted at the confidence level 95% employing
the formulaS ¼ ½1− 1þX

Y �X100. In the equation, X refers to the total num-
ber of hypotheses bearing the cost lesser than Hypo X, and Y refers to
the sum of the HypoGen runs (initial + random). The 95% confidence
was attained when X= 0 and Y= 19+ 1, therefore, S ¼ ½ 1þ0

19þ1�X 100 ¼
95. Subsequently generated results, Fig. 3A, precisely indicate that the
cost value of the Hypo1 was far lower than the 19 randomly generated
spreadsheets. Furthermore, these results highlight the superior quality
of the Hypo1 by additionally portraying that the Hypo1 was not gener-
ated by chance.
Table 1
Statistical parameters of ten pharmacophore hypotheses generated by HypoGen.

Hypo no Total cost Cost differencea RMSD

Hypo1 106.73 81.40 2.34
Hypo2 106.75 81.38 2.37
Hypo3 106.86 81.27 2.38
Hypo4 107.09 81.04 2.37
Hypo5 107.25 80.87 2.44
Hypo6 107.45 80.68 2.43
Hypo7 107.48 80.65 2.41
Hypo8 109.97 78.16 2.52
Hypo9 110.60 77.53 2.49
Hypo10 110.91 81.38 2.55

a Cost difference, difference between the null cost and the total cost. The null cost, the fixed
b Root mean square deviation.
c Abbreviation used for features: HBA, hydrogen bond acceptor; HBL, hydrogen bond accept

Please cite this article as: Rampogu, S., et al., Modulation of aromatase by
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3.2.2. Test set method
Test set method was executed to assess if the Hypo1 could predict

the activities of the compounds same as the experimental activity
ranges upon employing the protocol used for training set compounds.
A group of 20 compounds other than the training set compounds
possessing different activity values were chosen for its execution. The
compoundswere further grouped depending upon their activity ranges.
The compoundswith activity values less than 500nmol/L are referred to
as most active compounds, compounds with the activity ranges
between 500 nmol/L–10,000 nmol/L are labeled as moderately active
compounds and the compounds with activity values greater than
10,000 nmol/L are referred to as inactive compounds, respectively.
Hypo1 was able to predict the activities of the compounds in the same
order of magnitude as noticed with the experimental ranges, however,
one active and one inactive compound were determined as inactive
and active compounds, correspondingly, Table 3. Furthermore, the
b Correlation Featuresc Max fit

0.87 HBA, HBL, RA 10.78
0.87 HBL, HBL, RA 10.66
0.87 HBA, HBL, RA 10.61
0.87 HBL, HBL, RA 10.68
0.86 HBL, HBL, RA 10.36
0.86 HBA, HBA, RA 10.45
0.86 HBA, HBA, RA 10.56
0.85 HBA, HBL, RA 10.35
0.86 HBA, HBL, RA 10.66
0.85 HBA, HBL, RA 10.38

cost and the configuration cost are 188.138, 56.8887and 12.03, respectively.

or Lipid; RA, ring aromatic.

natural compounds—A pharmacophore guided molecular modelling
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Fig. 2. A) Interfeature distance of the generated three-featured pharmacophore, B) Mapping of themost active compound from the training set is found to abide to all the features of the
pharmacophore. C) Aligning of the inactive compound from the training set shows that only two features are been mapped.
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linear regression of the test set compounds was computed to be 0.87,
demonstrating a greater correlation between the experimental and
the predicted activities of test set and the training set, Fig. 3B.

3.2.3. Decoy set method
The decoy set method was employed to assess the ability of the

pharmacophore in selecting the active compounds from an external
dataset. Correspondingly, a dataset (D) of 152 compounds was
Table 2
Experimental and predicted activities of the training set molecules based on the
pharmacophore model Hypo1.

Name Fit valuea IC50(nmol/L) Errorb Activity scale

Experimental Predicted Experimental Predicted

C1 10.25 0.015 0.025 1.7 +++ +++
C2 7.14 0.2 32 160 +++ +++
C3 6.84 5.5 65 12 +++ +++
C4 6.72 22 85 3.9 +++ +++
C5 6 38 45 3.9 +++ +++
C6 6.12 53 45 3.9 +++ +++
C7 7.07 55 38 −1.5 +++ +++
C8 5.03 80 48 −1.5 +++ +++
C9 6.6 350 110 −3.1 +++ +++
C10 5.29 760 2300 3 ++ ++
C11 5.2 980 2800 2.8 ++ ++
C12 5.83 1100 660 −1.6 ++ ++
C13 5.98 12,000 470 −26 + +++
C14 3.6 16,000 110,000 7.2 + +
C15 5.35 110,000 2000 −56 + ++
C16 3.6 7.800000 110,000 −69 + +

a Fit value indicates how well the features in the pharmacophore overlap the chemical
features in the molecule.

b Division of higher value of experimental or predicted IC50 by lower predicted or
experimental IC50 value. ‘+’ indicates that the predicted IC50 is higher than the experi-
mental IC50; ‘−’ indicates that the predicted IC50 is lower than the experimental IC50;
a value of 1 indicates that the predicted IC50 is equal to the experimental IC50.
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organized comprising of 40 active compounds. The Ligand
Pharmacophore Mapping protocol was subsequently launched and the
obtained results were assessed based upon the goodness of fit score
(GF) and the enrichment factor (EF). These parameters were computed
using the formula,

EF ¼ Ha
Ht

� �
� A

D

� �

GF ¼ Ha
4HtA

� �� �
3AþHtð Þ � 1− Ht−Hað Þ � D−Að Þ½ �

The quality of the model was estimated depending upon the GF
score, which lies between 0 to 1 quantifying the model to be between
null, and ideal. Accordingly, Hypo1 has mapped to 43 compounds (Ht)
with 36 actives (Ha) in it. Moreover, the GF score was computed as
0.77, extrapolating the model to be a good one (Rampogu et al., 2017).
The obtained findings illuminate the ability of the pharmacophore in
retrieving the compounds with inhibitory effect from an external
dataset. The details of the decoy set calculations are summarized in
Table 4.

3.3. Virtual screening of the databases

Virtual screening using the validated pharmacophore as the 3D
query is one of the significant approaches in retrieving the chemical
compounds from the databases. Logically, the chemical features im-
bibed by the Hypo1 display as crucial role in identifying the compounds
with similar inhibitory activities. Correspondingly, the validated Hypo1
was utilized to screen the databases such as the alkaloids, flavonoids,
AfroDB and coumarins, employing the Ligand Pharmacophore Mapping
module embedded on the DS. The Hypo1 was allowed to map with
and subsequently redeem the compound. Consequently, 10 alkaloids,
61 flavonoids, 109 compounds from AfroDB, and 7 coumarins have
natural compounds—A pharmacophore guided molecular modelling
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Fig. 3. Validation of the pharmacophore model, A) Fischer's randomization illustrates that Hypo1 has the least cost value. B) Test set validation depiction where the regression is in
harmony with the training set.

t3:1

t3:2

t3:3

t3:4

t3:5

t3:6

t3:7

t3:8

t3:9

t3:10

t3:11

t3:12

t3:13

t3:14

t3:15

t3:16

t3:17

t3:18

t3:19

t3:20

t3:21

t3:22

t3:23

t3:24

t3:25

t3:26

t3:27

6 S. Rampogu et al. / South African Journal of Botany xxx (2018) xxx–xxx
aligned with the Hypo1. The resultant 187 compounds were escalated
to molecular docking studies to delineate on the interactions of these
compounds at the protein active site and additionally to secure an
ideal binding mode.

3.4. Molecular docking studies

Molecular docking is one of the techniques employed to sample the
conformations of small molecules at the protein active site using differ-
ent scoring functions. For the current study, the Cdocker available with
the DS was employed to conduct the molecular docking studies. The
Table 3
Experimental and predicted IC50 values of test set molecules as evaluated by Hypo1.

Name Fit IC50(nmol/L) Errora Activity scale

Experimental Predicted Experimental Predicted

C1 8.61 0.05 0.52 10 +++ +++
C2 8.17 0.15 1.4 9.5 +++ +++
C3 8.04 0.51 1.9 3.7 +++ +++
C4 5.74 34 380 11 +++ +++
C5 7.1 47 17 −2.8 +++ +++
C6 5.96 110 230 2.1 +++ +++
C7 5.39 440 460 1.9 +++ +++
C8 3.02 910 200,000 220 ++ +
C9 5.93 1400 540 −5.8 ++ ++
C10 5.42 2500 790 −3.2 ++ ++
C11 4.52 4200 6300 1.5 ++ ++
C12 4.64 6900 4800 −1.4 ++ ++
C13 4.67 10,000 4500 −2.2 ++ ++
C14 5.97 11,000 220 −49 + +++
C15 3.82 14,000 32,000 2.3 + +
C16 4.34 22,000 9600 −2.3 + ++
C17 3.29 61,000 110,000 1.8 + +
C18 3.02 72,000 200,000 2.8 + +
C19 4.68 380,000 44,000 −88 + +
C20 3.02 7.40E + 06 200,000 −37 + +

a ‘+’ indicates that the predicted IC50 is higher than the experimental IC50; ‘−’ indi-
cates that the predicted IC50 is lower than the experimental IC50; a value of 1 indicates
that the predicted IC50 is equal to the experimental IC50.
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filtered 187 compounds along with the reference (most active com-
pound in the training set) and two FDA approved drugs were upgraded
to docking at the specified parameters as described previously, Supple-
mentary Fig. 1. For the selection of the most valuable candidate com-
pounds, all the compounds that have rendered a dock score higher
than the reference compound and the FDA approved drugs were consid-
ered for further processing. Accordingly, the compounds from the largest
cluster that demonstrated an ideal binding mode, with highest dock
score complemented by key residue interactions were sorted. A total of
19 compounds have satisfied the above criteria and were referred to as
potential Hits, Table 5. It was noteworthy to observe that the flavonoids
and the AfroDB have rendered highest dock score than the reference and
approved drugs, Table 5. Amongst them, three highest dock scored com-
pounds that have represented interactionswith the key residues and ad-
ditionally mapped with all the features of the pharmacophore, Fig. 5,
were labeled to as Hits. These compounds were subjected to molecular
dynamics studies to delineate on the nature of the ligands at the proteins'
active site and further to estimate andauthenticate the docking accuracy.

3.5. Molecular dynamics simulations

To further shed light and gain insight into the behaviour of the small
molecules at the proteins active site and to assess their stability thereby
t4:1Table 4
t4:2Different parameters calculated in decoy set method.

t4:3Parameters Values

t4:4Total number of molecules in database (D) 152
t4:5Total number of actives in database (A) 40
t4:6Total number of Hit molecules from the database (Ht) 43
t4:7Total number of active molecules in Hit list (Ha) 36
t4:8% Yield of active [(Ha/Ht) 83.72
t4:9% Ratio of actives [(Ha/A) × 100] 90
t4:10Enrichment factor (EF) 3.18
t4:11False negatives (A–Ha) 4
t4:12False positives (Ht–Ha) 7
t4:13Goodness of fit score (GH) 0.77
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t5:1 Table 5
t5:2 Potential Hits and their respective dock scores.

t5:3 Compound Name -Cdocker
energy

-Cdocker
interaction
energy

t5:4 ZINC95486358 13.99 64.36
t5:5 ZINC95486354 23.31 57.71
t5:6 ZINC90711737 11.31 57.29
t5:7 ZINC95486309 22.25 56.67
t5:8 ZINC95486171 13.08 56.18
t5:9 ZINC95486056 30.97 56.05
t5:10 ZINC95486340 24.19 54.75
t5:11 ZINC95486124 21.57 54.37
t5:12 ZINC01530009 45.924 53.15
t5:13 ZINC95485961 −5.67 52.49
t5:14 Curcumin 30.32 52.39
t5:15 Puerarin 6.31 43.78
t5:16 Myricetin 3-O-beta-glucuronide 34.82 40.75
t5:17 Isorhamnetin

3-O-beta-D-glucopyranoside
24.83 40.20

t5:18 Gericudranin 15.52 36.60
t5:19 Apigenin-7-O-beta-D-glucopyranoside 21.21 36.31
t5:20 Baicalin 12.20 35.00
t5:21 Myricetin 3-O-alpha-rhamnoside 29.69 33.29
t5:22 Gericudranin C 17.85 26.34
t5:23 Letrozole 8.716 19.05
t5:24 exemestane 64.20 13.90
t5:25 Reference 87.33 8.54

t5:26 -Cdocker energy and -Cdocker interaction energy are expressed in kcal/mol.
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ensuring the reliability of the docking results, the molecular dynamics
simulations were executed recruiting GROMACS to accomplish this en-
deavor. A 30 ns MD run was initiated and the findings were read by
means of root mean square deviation (RMSD) for the protein backbone
atoms. The RMSD values were noticed to be less than 0.2 nm for all the
four systems, Fig. 4A, throughout the simulations inferring that the sys-
tems were in harmony with no abnormal behaviour. Additionally, the
average RMSD for the reference was observed to be 0.18 nm while
Hit1, Hit2 andHit3were found to be 0.16 nm, 0.14 nmand 0.14 nm, cor-
respondingly. These results imply that the Hits were relatively stable
than the reference throughout the whole simulation. Following this, to
probe into the binding mode analysis, the representative structures
Fig. 4.Molecular dynamics simulation results. A) Illustration of the stability of the protein backbo
and the reference within the binding pocket. C) Enumeration of the hydrogen bonds, the Hits
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from the last 4 ns trajectories were extracted and were thereafter
superimposed. The superimposition revealed that the Hits have
displayed a binding pattern similar to that of the reference, Fig. 4B
being seated at the active site. Monitoring the intermolecular interac-
tions, it was disclosed that a good number of key residues have
anchored with the ligands establishing proper positing of the ligands.

Delineating on the reference compounds it was observed that the
reference has formed five hydrogen bond interactions involving the res-
idues Asp371, Leu372,Met374, and Leu477, respectively rendered by an
acceptable bond length, Fig. 5A. Additionally, a host of charged residues
have facilitated the accommodation of the ligand in the active site. The
residues Val370, Leu372, Asp309, and Ser478 have held the ligand
through the carbon hydrogen bonds. TheMet374 residue has displayed
a unique π-sulfur bond rendered by 5.6 Åwith the benzene ring A of the
ligand. The aromatic ring of Phe134 has interactedwith the ring A of the
ligand forming a π–π T shaped bond with a distance of 4.5 Å. The ben-
zene ring of Phe221 has joined with ring C of the ligand rendered by a
distance of 5.4 Å forming π–π T stacked interaction. Additionally the
pentane ring of the reference compound has interacted with Ile133,
Ile305, and Ala306 firmly holding the ligand through π–alkyl interac-
tions. Moreover, different charged amino acid residues such as
Arg115, Trp224, Glu302, Thr310, Val369, Val373, and Ile395 were no-
ticed to interact with the ligand through various Van derWaals interac-
tions, Table 6 and Supplementary Fig. 2.

The Hit1 has formed four hydrogen bond interactions rendered by
three residues, Arg115, Leu372 and Leu477, respectively, by a bond dis-
tance lower than 3 Å, Fig. 5B. Additionally, the ring A of the ligand has
joined to the aromatic ring of Phe221 forming a π–π T interaction
rendered by a distance of 3.8 Å. Similar interaction was noticed with
the imidazole ring of His480 and the ring A of ligand with a distance
of 4.8 Å demonstrating π–π T interaction. The benzene ring of the
Trp224 residue has interacted with the ring B of Hit1 with a distance
of 5.8 formed by π–π T interaction. These interactions were held at the
extreme ends of the ligand and thereby locking the Hit1 into the pro-
teins binding pocket. The residues Ile133 and Val313 were noticed to
contribute towards proper positioning of the ligand formed by π–alkyl
interactions holding the ligand at ring A and ring B, respectively. Alter-
natively, the residues Leu372, Leu477 and Ser478 were involved in the
interactions through carbon hydrogen bonds. The charged residues
ne atoms. TheRMSDappears to be stable for all the systems. B)Accommodation of theHits
have rendered greater number of hydrogen bonds than the reference.

natural compounds—A pharmacophore guided molecular modelling
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Fig. 5.Molecular hydrogen bonds of the reference (A), Hit1 (B), Hit2 (C) and Hit3 (D), respectively.
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such as Arg192, Phe134, Gln218, Ser478, Pro481, Glu483 have formed
the Van der Waals interactions aiding the ligand to be accommodated
within the binding pocket, Table 6 and Supplementary Fig. 3.

Hit2 has formed the highest number of hydrogen bonds summing to
six involving four residues, Arg115, Asp309, Leu372 and Leu477,
Table 6
Comprehensive molecular interactions between proteins key residues and the ligands.

Name Hydrogen bond
interactions b3 Å

π-Bonds Alkyl/π-alkyl Van der Waals
interactions

Ref Asp371:HN-O31
(2.9)

Phe134,
Phe221

Ile133, Arg115, Trp224,

Leu372:HN-O31
(2.0)

Ile305, Glu302, Thr310,

Met374:HN-O33
(1.9)

Ala306 Val369, Val373,

Leu477:O-H50
(1.8)

Ile395

Hit1 Arg115:HE-O39
(2.9)

Ile133,
Val313

Arg192, Phe134,

Arg115:HH21-O39
(2.7)

Phe221,Trp224, Gln218, Ser478,

Leu372:O-H56
(2.3)

His480 Pro481, Glu483

Leu477:O-H55(1.9)
Hit2 Arg115:HH1-O32

(2.9)
–

Asp309:OD2-H42
(1.8)

Ile133,

Leu372:HN-O34
(2.8)

Trp224, Ile105, Phe134,

Leu372:O-H51(2.0) Ala306, Phe221,Asp371,
Leu372:O-H49
(2.0)

Val370, Met374,Ser478

Leu477:O-H50(1.9) Leu477
Hit3 Asp309:OD2-H41

(1.8)
– Ile133,

Leu372:O-H49
(1.8)

Ala306, Phe134, Phe221,

Met374:HN-O31
(1.9)

Val370, Trp224, Asp371,
Ser478

Leu477:O-H48
(2.0)

Leu477
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respectively demonstrating an acceptable bond length, Fig. 5C. Addi-
tionally, the residues Arg115 and Val373 have involved with the ligand
by forming the carbon–hydrogen bonds. Unlike other ligands, the Hit2
was devoid of π–π T interaction, however, formed alkyl and π–alkyl
interactions. The ring A of the ligand has interacted with the Ala306
and Ile133 of the protein with the π–alkyl interactions. The ring B of
the ligand has interacted with Trp224 by π–alkyl and Val370 residue
by alkyl hydrophobic bond. Furthermore, the ring C has anchored to
Val370 and Leu477 by π–alkyl interactions. These interactions further
lead us to understand that the alkyl and π–alkyl interactions were
spread across the ligand thereby effectively clamping the ligand. Addi-
tionally, the Van der Waals interaction formed by the residues Ile105,
Phe134, Phe221, Asp371, Met374, and Ser478 further assist the ligand
to be buried into the active site, Supplementary Fig. 4.

The Hit3 has formed four hydrogen bond interactions with the key
residues Asp309, Leu372,Met374 and Leu477 contributed by an accept-
able bond length, Table 6 and Fig. 5D. The residues Leu372, Val370, and
Val373 have involved in the molecular interaction with the carbon
hydrogen bonds. Furthermore, the π–alkyl interactions were noticed
with the rings A, B and C of the ligand formed by different residues.
Ile133 and Ala306 residues held the ring A while the ring B is held by
Val370 residue. Furthermore, the ring C has participated in the π–alkyl
interactions with Val370 and Leu477 residues thereby firmly position-
ing the ligand. Besides these, the charged residues such as Phe134,
Phe221, Trp224, Asp371, and Ser478 substantially locked the inhibitor
within the active site of the protein, Supplementary Fig. 5.

To further decipher on the nature of the binding of the candidate
compounds at the active site of the protein, their intermolecular hydro-
gen bond interactions were scrupulously monitored throughout the
simulation time. The average hydrogen bonds noted for the reference
compoundwas recorded as 0.4 while the Hit1, Hit2 and Hit3 has gener-
ated 1.7, 2.4 and 1.9, respectively, Fig. 4C. These results together with
the comprehensive interactions distinctly illuminate the superiority of
the Hit compounds over the reference compound and guide us to com-
prehend on employing the natural compounds against aromatase. The
Hits have additionally revealed the features demonstrated by the
Hypo1, bestowed by aligning well with the pharmacophore model,
Fig. 6. Furthermore, the novelty of the identified Hits was assessed
natural compounds—A pharmacophore guided molecular modelling
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Fig. 6. Overlay of the Hits onto the Hypo1 displayed that the Hits represent the key features essential for inhibition.
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using the online search tool such as PubChem and the results assured
the novelty of the compounds.

4. Discussion

Estrogen plays an important role noticed in the hormone-dependent
breast cancer proliferation with an elevated levels (Brueggemeier et al.,
2001; Ahmad and Shagufta, 2015). In the recent years, two approaches
have been deduced to combat this, which includes development of
estrogen receptor antagonist, or to develop new drugs against breast
cancer (Maurizio et al., 2002; Park and Jordan, 2002; Miller, 2004). Nat-
ural compounds are deemed to have several medicinal values and have
been assisting the humankind fromancient ages (Dias et al., 2012;Uysal
et al., 2016; Zengin et al., 2018). The use of natural compounds as poten-
tial AIs have proven to be promising therapeutics as they are non-toxic
and abundant in availability (Balunas et al., 2008; Balunas and
Kinghorn, 2010a, 2010b; Mocanu et al., 2015). Accordingly, the current
investigation proceedswith the generation of 3D QSAR pharmacophore
model and to subsequently obtain the compounds with inhibitory
groups. The pharmacophoremethods for the identification of lead com-
pounds have been in a great demand in the drug discovery pipeline and
have been well documented (Langer and Hoffmann, 2006; Katsila et al.,
2016; Rai et al., 2017; Ma et al., 2018; Rampogu et al., 2018b). Encour-
aged by these reports, the current investigation proceeds by in silico
methods to retrieve the potential compounds from different
phytochemicals.

The well-validated pharmacophore model, Hypo1 was employed to
screen and subsequently identify the compoundswith inhibitory poten-
tial. Amongst the retrieved compounds, the natural compounds have
generated higher dock scores than the known drugs, illuminating
their therapeutic potential. The compounds from the Zinc database
have rendered significantly higher dock scores, being accommodated
at the active site of the protein with several key residues as was noticed
earlier (Mirzaie et al., 2013). It was worth mentioning that the Hit1 has
anchoredwith the key residue Arg115, and Hit2 has joinedwith the key
residues such as Asp309 and Arg115, while Hit3 interacted with
Please cite this article as: Rampogu, S., et al., Modulation of aromatase by
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Met374, respectively. These interactions are in agreementwith the pre-
viously reported results. (Mirzaie et al., 2013; Lee and Barron, 2018).
Additionally, the MD affirmed docking results have revealed that the
residues Leu372 and Leu477 have formed the hydrogen bonds with all
the Hits as was observed with the reference rendered by acceptable
bond length and are in parallel with the previous reports (Kumavath
et al., 2016). The residues such as Ile133 and Phe134 were observed
with the Hits forming the Alkyl/π–alkyl and Van derWaals interactions,
respectively, holding the ligand firmly at the active site groove.

The residues Ile133 and Phe134 were noticed to interact with the li-
gands from one side while the Leu372 and Leu477 were located at the
opposite site thereby clamping the ligands firmly at the protein active
site. These observations direct us to assume that the interactions with
the residues Ile133, Phe134, Leu372 and Leu477 are imperative in
inducing the therapeutic potential. Furthermore, these findings prompt
us to speculate that the identified Hit candidatesmight potentially exert
aromatase suppression.
5. Conclusion

The current study emphasizes the use of natural compounds against
breast cancer. Breast cancer is regarded as one of the major causes of
death in women noticed globally. The currently available treatments
have manifested several toxic effects with the association of resistance
that provokes the urgency in the development of new drugs. Natural
compounds have been known to be possessed with medicinal proper-
ties since the ancient period. For the current investigation, different nat-
ural compounds have been evaluated to assess their efficacy against
aromatase using computational approaches. The chosen natural com-
pounds have generated higher dock scores than currently available
treatments thereby emphasizing there usability as alternative therapeu-
tics. Additionally, the identified Hit compounds (ZINC95486358,
ZINC95486354, and ZINC90711737) have demonstrated key interac-
tions complemented by an ideal binding mode with stable MD results
as compared with the reference compound. Therefore, we presume
natural compounds—A pharmacophore guided molecular modelling
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that these compounds could act as potential alternatives to breast can-
cer or can serve as platforms for designing new drugs.
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