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In a similar fashion to transcription factors, non-coding RNAs

can be essential regulators of gene expression. The largest

class of non-coding RNAs is the microRNAs. These �22 nt

double-stranded RNA molecules can repress translation or

target mRNA degradation. There has been a surge of research

in the past year stimulated by the recent availability of

specialized techniques, both in vitro and in silico, for predicting

and characterizing microRNAs. The accumulating evidence

suggests that microRNAs are ubiquitous regulators of gene

expression during development. The combined actions of

microRNAs and transcription factors are able to tune the

expression of proteins on a global level in a manner that cannot

be achieved by transcription factors alone.
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Introduction
MicroRNAs (miRNAs) are a recently discovered class of

non-coding RNAs (see glossary) that have turned out to

be potent regulators of gene expression during develop-

ment [1�,2]. First characterized in C. elegans more than ten

years ago, miRNAs have since been found to be prevalent

throughout metazoans [3–6]. Estimates indicate that 0.5–

1% of metazoan genes encode miRNAs [7]. Analysis of

conserved miRNA-like hairpin sequences suggests that

mammalian genomes contain in excess of 1000 miRNAs.

Recent studies have shown that miRNAs are involved in

multiple pathways in a variety of organisms, including

developmental transitions and neuronal patterning in

worms, apoptosis and fat metabolism in flies, and regula-

tion of exocytosis and modulation of hematopoietic line-

age differentiation in mammals [8�,9�,10��,11]. The

expression of a single miRNA can change the global gene

expression profile of a cell by altering the levels of

hundreds of transcripts [12��]. At this time, few miRNA
www.sciencedirect.com
targets have been validated, but phenotypic evidence

suggests that miRNAs are essential determinants of line-

age-specificity.

miRNAs are attractive regulators of developmental fate

because of their abundance and their distinct patterns of

spatio-temporal expression. The repertoire of miRNAs

increases dramatically from worms to mammals (The

miRNA registry; URL: http://microrna.sanger.ac.uk/

sequences/index.shtml [13]). This increase in miRNA

diversity is far greater than that seen for transcription

factors, suggesting that miRNAs play a greater part in

specifying vertebrate development. During central ner-

vous system development, families of miRNAs appear to

be expressed in temporal waves [14] that might restrict

cells towards different subtypes. Research in the past year

provides evidence for this model. The role of miRNAs

extends beyond development, however, as these mole-

cules are actively transcribed in the adult brain. It is

possible, for example, that miRNAs play a part in the

plasticity of adult neurons by regulating local protein

synthesis in dendrites. Here, we discuss how current

research supports a conserved role for miRNAs in proper

differentiation and maintenance of the central nervous

system.

Biogenesis
Genes encoding miRNAs can be grouped into classes

according to their location within the genome. A large

fraction of miRNA genes are found in intergenic regions,

although most are found within the introns of coding and

non-coding transcripts. Despite differences in their initial

generation, the various classes of miRNAs share common

steps in their biogenesis. Recently, a class of miRNAs has

been identified, the members of which seem to reside in

exonic regions of coding transcripts. However, analysis of

their evolutionary conservation in relation to expressed

sequence tag (EST) data suggests that these miRNAs

might actually reside within 50 untranslated regions

(UTRs). Typically, miRNAs in intergenic regions are

found in clusters and are generated from polycistronic,

primary (pri)-miRNA precursors transcribed by RNA

polymerase II [15]. Intronic miRNAs are usually

expressed as part of a parent transcript, then subsequently

spliced out and associated with exportin 5, saving them

from degradation [16,17]. Additionally, miRNAs that

reside in the introns of non-coding transcripts have been

identified. In some of these instances, exonic regions of

the non-coding transcript are degraded, whereas the

intronic regions containing the miRNAs are saved in a

manner similar to the processing of small nucleolar RNAs
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Glossary

Double-stranded RNA oligos: Synthetic double-stranded RNA

molecules that can be introduced into cells to mimic the action of

endogenous microRNAs.

Microprocessor complex: An enzymatic complex, containing

drosha and its co-factor DGCR8, that cuts out stem loops from long

primary microRNA transcripts in the nucleus.

Non-coding RNA: A gene that contains no open reading frame but is

actively transcribed and that has a biological function.

Stem loop: A lollipop-shaped secondary structure that is formed

when a single-stranded nucleic acid molecule folds back on itself to

form a complementary double helix (stem) topped by an unpaired

loop.

Translational block: The primary mechanism through which

microRNAs regulate gene expression in mammals. MicroRNAs target

the RNA induced silencing complex to the 30 untranslated regions of

mRNAs, thereby blocking the translational machinery in an unknown

manner. Through this mechanism, microRNAs are able to

downregulate protein levels without affecting mRNA levels.
[18�]. Thus, the functional component of these genes

appears to be the intron, rather than the exons.

The long primary miRNA transcripts are cleaved in the

nucleus into shorter stem loops (see glossary) by a micro-

processor complex (see glossary) that consists of an

enzyme called drosha and its co-factor DGCR8 [19–

23]. The resultant stem loops, designated precursor

(pre)-miRNAs, are then exported to the cytoplasm by

the exportin 5 machinery. Once in the cytoplasm, pre-

miRNAs undergo further processing by Dicer, resulting

in the mature 22nt RNA duplex. The duplex is then

unwound and one strand is preferentially loaded onto the

RNA induced silencing complex (RISC). miRNAs are

able to target the RISC to the 30UTR of specific mRNAs

through imprecise base pairing with miRNA recognition

elements (MREs). The arrangement of multiple MREs

in the 30UTR can be thought of as a barcode that is read

by the set of miRNAs expressed in the cell to tune the

translation of mRNAs to a certain level. The 30UTRs of

pri-miRNAs can also contain MREs, suggesting that they

too are post-transcriptionally regulated [24]. In this way,

the full complement of miRNAs expressed in a cell can

determine cellular fate through regulation of groups of

specific proteins [25��].

Worms
Studies of miRNAs initially focused on their ability to act as

switches between developmental stages inC. elegans. Since

then, other pathways have been identified in which the

expression of a miRNA restricts cell fate. Perhaps the best

example of such a pathway is the lateralization of chemo-

sensory organs inC. elegans through the asymmetric expres-

sion of miR273 and lys-6 [26��,27]. Two populations of

chemosensory neurons exist in nematodes, the ASE right

(ASER) and the ASE left (ASEL). The spatial expression

of C. elegans miR273 is strongly biased to the ASER during

development, resulting in the translational block of the

transcription factor die-1, which contains two MREs for

miR273 in its 30UTR. The low expression of die-1, in turn,
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enables the default expression of ASER genes. In the

ASEL, where miR273 expression is low, the increased

levels of die-1 drive the expression of lys-6, another

miRNA, which leads to expression of ASEL-specific genes.

This pathway provides a paradigm for how ‘coded’ tran-

scripts responding to the expression of miRNAs bring

about a lineage-specific translational profile.

Flies
The association of miRNAs and RISC members with the

fragile X mental retardation protein (FMRP) provides

tantalizing evidence for the regulation of local dendritic

protein synthesis by miRNAs [28,29]. FMRP is an RNA-

binding protein that can regulate local protein synthesis

in response to synaptic activity [30]. Recent evidence

suggests that rather than regulating translation on its own,

FMRP recruits mRNAs to the RISC complex where they

can associate with miRNAs [31�]. This process might

provide added specificity in the translational block (see

glossary). This model is compatible with the idea that

miRNAs could act as tags to mark synapses for changes in

local protein synthesis. A synaptic tag must be present at

spines, its actions should be reversible, and it must be

able to interact with the cellular machinery to produce a

lasting change in synaptic function [32]. miRNAs fit all

three criteria. Numerous miRNAs have been cloned from

dense neuronal fractions that contain polyribosomes,

which are sites of local protein synthesis [33,34�,35].

Furthermore, RISC proteins and target mRNAs are also

associated with polyribosomes. miRNAs could create

reversible blocks in two ways (Figure 1). Either the RISC

complex could become functional in response to synaptic

activity (potentially through a phosphorylation event or

the recruitment of different subunits) or mRNAs in the

dendrite could undergo activity-dependent conforma-

tional changes that make their 30UTRs accessible. The

availability of the target site has a huge effect on the

efficacy of RISC action [36]. Conversely, activation of the

RISC through a second messenger system is equally

plausible. The enzyme complex containing Dicer-2

(DCR-2) and R2D2 (the fly homolog of the C. elegans
protein RDE-4) link the initiation and execution steps of

RNAi by loading nascent siRNAs onto the RISC [37,38].

Loquacious, a recently identified miRNA equivalent of

R2D2 [39,40], might similarly regulate initiation of

miRNA-mediated silencing. Thus, the DCR-2–R2D2

complex could keep mature miRNAs sequestered from

the RISC until an appropriate activation signal is

received. The presence of an inducible regulator at the

spine circumvents the need for a signal to travel from the

activated spine to the soma and back again to tag a

particular set of synapses.

Zebrafish
miRNAs are essential for proper developmental pattern-

ing in zebrafish. Zebrafish lacking Dicer lose the ability to

process pre-miRNAs, which results in major patterning
www.sciencedirect.com
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Figure 1

Hypothetical model for activity-dependent repression of dendritic protein synthesis. (a) A depolarizing impulse induces a conformational change

in the 30 UTR of target mRNAs, perhaps by releasing a RNA binding protein (red). (b) The conformational change enables the RISC (green) to bind

to the MRE in the target, resulting in post-transcriptional repression. (c) Pre-miRNAs are processed in the cytoplasm by a protein complex

consisting of DCR-2 and R2D2 (shown in orange and blue). In the dendrite, a depolarizing impulse induces the transfer of the mature miR into

the RISC, targeting the complex to the 30 UTR of mRNAs and enabling (b) post-transcriptional repression. Both of these processes (a or c)

could be regulated by phosphorylation. In either case, the change in local protein synthesis persists after the initial impulse, enabling miRNAs

to act as activity-dependent tags.
defects, including improper brain morphogenesis. These

defects can be rescued by injection of double-stranded

RNA oligos (see glossary) representing mature sequences

of the miR430 family [41�]. Interestingly, injection of the

oligos rescued the major neural defects but not other

patterning defects, such as ear or heart formation, indicat-

ing that miR430 has a tissue-specific role. Rescued

embryos still displayed minor neuronal defects and delays

in later developmental stages, suggesting obligatory roles
www.sciencedirect.com
for other miRNAs during development. Interestingly, a

recent in situ hybridization study found that �30% of

zebrafish microRNAs were detected specifically in the

CNS or in discrete populations of cells within the CNS

[42��].

Mammals
The role of miRNAs in mammalian systems is unclear at

this time, because only a handful of target interactions
Current Opinion in Neurobiology 2005, 15:507–513
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have been validated in vivo [10��]. However, a model is

emerging based on evidence that, similar to the situation

in model organisms, mammalian miRNAs are involved in

restricting the fate of progenitor cells. Evidence from

microarray studies suggests that miRNAs can be grouped

into families based on their expression at specific time-

points. The switch from one family to another indicates a

fundamental shift in the expression profile of a cell and its

consequent restriction towards a particular lineage. Large

subsets of miRNAs are enriched in the brain [34�,35,43–

46], and the expression of certain families increases

dramatically in parallel with cortical development

[14,47,48]. A recent study examined the regulation of

miRNA expression during neural cell specification [49].

Two miRNAs (miR124 and 128) were found to be active

primarily in neurons, whereas others (miR23, 26, and 29)

were preferentially active in astrocytes (Figure 2). Still
Figure 2

During differentiation progenitor cells express families of miRNAs in a seque

protein expression profile. Different cell types express lineage-specific miRN

can be grouped into classes (represented by the boxes labeled A, B and C

arrangement of MREs in the 30 UTRs of mRNAs function as a barcode that

levels. The translation of all transcripts that share a barcode (i.e. are in the

group containing the correct barcode will have its translation repressed by

of a miRNA family represses classes of proteins to tune translational levels

and miR128) and astrocyte specific miRNAs (miR23, miR29, and miR26) ha

miRNAs are hypothetical. As cells switch from a progenitor state to a matur

and –y) and gain expression of one of the mature miR families (miR124a, 12

families, the cellular protein expression profile shifts towards that of the new
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other miRNAs (miR9 and 125) were expressed ubiqui-

tously throughout the brain and it is likely that progeni-

tor-specific miRNAs will also exist. These results suggest

that miRNAs are expressed during differentiation of the

brain to help tune the lineage-specificity of cellular

protein levels. Further research is necessary to illuminate

what these miRNAs are doing to regulate gene expres-

sion, but computational methods predict that many

neural transcription factors are targets [50].

miR124a has emerged as an important regulator of brain

morphogenesis. Not only is it one of the most abundant

miRNAs in the brain but also the binding motif for

mir124a is also one of the most prevalent MREs in the

30UTRs of mammalian transcripts [51]. A recent micro-

array study observed down-regulation of more than 100

messages after injection of miR124a into HeLa (a human
ntial manner, resulting in lineage-specific changes in the cellular

As that affect the translation of subsets of transcripts. Transcripts

) based upon the arrangements of MREs in their 30 UTRs. The

can be read by the set of expressed miRNAs to tune product

same group) will be regulated similarly. As shown above, only the

the currently expressed miRNA family. In this way, the expression

to lineage-specific parameters. Neuron specific miRNAs (miR124a

ve already been identified. The progenitor-specific miR-x and -y

e state they loose expression of the progenitor miR family (miR-x

8 or miR23, 29, and 26). As a result of the turning over of the miR

cell type.

www.sciencedirect.com
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Figure 3

miR124 represses the translation of multiple targets by transcript cleavage. (a) miR124 directs cleavage of more than 100 transcripts containing

putative MREs through targeting of the RISC. Transcripts subject to this cleavage (‘slicer’) activity are predominantly ‘non-neuronal’. (b) An

alternative mechanism would be for miR124 to cause a more conventional translational block of a crucial ‘non-neuronal’ transcriptional activator.

The absence of this hypothetical activator could also cause a decrease in levels of ‘non-neuronal’ transcripts.
carcinoma cell line) cells [12��]. Interestingly, the new

gene expression profile resembled that of a mature neu-

ron, indicating that the expression of miR124a by itself is

able to tune protein levels towards a restricted fate

through degradation of mRNA containing the proper

‘code’ (Figure 3). Preliminary studies suggest that over-

expression of the proneural transcription factors MASH1

and neurogenin promote differentiation of neural pro-

genitor cells into neurons, in part by inducing expression

of miR124a [52].

Conclusions
The miRNA field is still young and many questions

remain unanswered. Much of the previous research has

concentrated on the processing of miRNA precursors.

Currently, efforts have shifted towards the identification

of in vivo targets and the elucidation of regulatory net-

works. The articles discussed in this review suggest that

miRNAs are essential regulators of CNS development.

miRNAs might act not only to change cell fate initially

but also to stabilize cell fate at a later stage by maintaining

lineage-specific expression patterns. Furthermore, miR-

NAs might mark spines for differential translation in

response to changes in synaptic activity. Additional stu-

dies will undoubtedly provide new insights into how

these essential molecules contribute to the regulation

of neuronal gene expression.

Update
The miR1 family was recently shown to be involved in

the development of the murine heart [53]. Expression of

the miR1 family must be timed correctly to achieve the
www.sciencedirect.com
proper protein expression profile conducive to differen-

tiation of progenitor cells. Mis-expression of the miR1

family too early during development slows the differen-

tiation of heart progenitor cells, leading to defects in heart

formation.

A role for miRNAs in cancer is also beginning to be

explored [54,55]. Microarray experiments show that can-

cer cells express a wide variety of miRNAs, with great

diversity in miRNA expression among cancer types [56].

Interestingly, the subtype of a cancer cell can be deter-

mined by looking at its miRNA expression profile. The

expression pattern of miRNAs in a cancer cell represents

a molecular fingerprint that is unique to the develop-

mental history of the cancer, much more so than the

profile of expressed mRNAs.

The mechanism by which miRNAs block the translation

of targets mRNAs is still poorly understood. However,

new evidence suggests that miRNAs might repress trans-

lation by interfering with recognition of the m7G cap by

the translational machinery [57]. Furthermore, processing

bodies (p-bodies), cytoplasmic sites of mRNA degrada-

tion, have been implicated in miRNA-mediated transla-

tional repression. Members of the RISC, cap-binding

proteins, miRNAs, and repressed mRNAs have been

shown to accumulate in p-bodies in an RNA-dependent

manner [57–61]. It is unclear, however, if miRNAs direct

messages to p-bodies in order to sequester them away

from the translational machinery, or if repressed mRNAs

are directed to p-bodies as a consequence of the miRNA-

mediated translational block.
Current Opinion in Neurobiology 2005, 15:507–513
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